Monday, November 6, 2017

November 13, 2017. 3:00PM. BPB-217. Champika Sandamali Weerasooriya. Probing Broad Line Regions of Active Galactic Nuclei.

Ph.D. Defense

The broad line regions (BLR) of Type I Active galactic nuclei are too small to be spatially resolved even with the most powerful telescopes available. Observations suggest that the BLR gas is moving under the influence of the gravitational potential of a central super massive black-hole and responds to the variations in the ionizing continuum flux of the accretion disk. The continuum flux variations cause broad emission line variations with a time delay. Reverberation mapping campaigns seek to use this time variability to resolve the BLRs in the time domain instead of spatial domain, providing a way to infer geometry and kinematics of the BLR and calculate the mass of the central black hole. Numerous BLR models have been proposed over the years but only few of them are physically motivated. In this work, we examine the feasibility of constraining the parameters of such a physically motivated model; a disk-wind model of the BLR. We employ a Bayesian inference framework to compare predicted line light curves to an observed line light curve, using simulated data. A shortcoming of reverberation mapped data is that they may contain large gaps between consecutive observations. We have implemented a method and developed a code to evenly sample observed continuum light curves. One can then carry out, using observational data, an analysis similar to the one discussed above.